

Molecular Predictors of 3D Morphogenesis by Breast Cancer Cells in 3D Culture

Ju Han

Imaging & Informatics Lab
Life Sciences Division
http://vision.lbl.gov

Outline

- Motivation
- Experimental design
- Previous work
- Approach
- Results
- Summary

Motivation

- A panel of cell lines for analysis
 - Introduce necessary molecular diversity
 - Generate heterogeneous responses to the treatment
 - Offer an improved model system for high-content screening, comparative analysis, and cell systems biology
- Morphometric subtyping for a panel of breast cancer cell lines in identifying
 - subpopulations with similar morphometric properties
 - molecular predictors for each subpopulations

Experimental design

- A panel of 24 breast cancer cell lines
 - 600MPE, AU565, BT474, BT483, BT549, CAMA1, HCC1569,
 HCC70, HS578T, MCF12A, MCF7, MDAMB231, MDAMB361,
 MDAMB415, MDAMB436, MDAMB453, MDAMB468, S1, SKBR3,
 T4, T47D, UACC812, ZR751, ZR75B
- All 3D cell cultures were maintained for 4 days with media change every 2 days, and samples were then imaged with phase contrast microscopy
- Computational pipeline
 - Colony segmentation and representation
 - Phenotypic clustering
 - Molecular predictor of morphometric clusters
 - Molecular predictor of morphometric features

Previous work (Kenny et. al, Gene Ontology, 2007)

Round

Mass

Grape-like

Stellate

- Organized nuclei
- Robust cell-cell adhesion
- · Disorganized nuclei
- Robust cell-cell adhesion
- · Disorganized nuclei
- Poor cell-cell adhesion
- · Disorganized nuclei
- Elongated cell body with invasive processes

Automatic subtyping a panel of breast cancer cell lines in 3D culture """

Colony segmentation and representation (phase images)

Colonies are separated from the background based on texture features; Morphometric features (size and shape) are extracted for each colony.

Clustering of morphometric features

Challenges

- Morphometric features are heterogeneous for the same cell line
- Sample size varies for different cell lines
- there is no prior knowledge of the number of clusters

Consensus clustering

- A proven method in analyzing gene expression data (Monti et. al, Machine Learning 2003)
- Repeated random resampling
- Determine the number of clusters by evaluating the consensus distribution for different cluster numbers

January 6th, 2010

Consensus clustering on a panel of 24 breast cancer cell lines in 3D

Results with three clusters

Molecular predictors of morphometric clusters

- Heat maps of top selected genes that best predict each of the three morphometric clusters
 - Gene ranking based on moderated t-test

Best genes for predicting the stellate cluster

implicated in the pathway of many diseases including cancer

Gene symbol affects	Gene description the epithelial-mesenchymal transition in cancer	$E_{B.632+}$	Expression level
PPARG	peroxisome proliferator-activated receptor gamma	0	+
FADS1///FADS3	fatty acid desaturase 1///fatty acid desaturase 3	0	+
ZEB1	zinc finger E-box binding homeobox 1	0.0013	+
PVRL3	poliovirus receptor-related 3	0.0024	+
AKAP2///PALM2///PALM2-AKAP2	A kinase (PRKA) anchor protein 2///paralemmin 2///PALM2-AKAP2	0.0036	+
DOCK10	dedicator of cytokinesis 10	0.0037	+
CLCN6	chloride channel 6	0.0043	+
CTAGE4///LOC100142659///LOC4412 affects	94 similar to CTAGE6///CTAGE family, member 4///CTAGE family mem-	0.0047	-
DAB2	disabled homolog 2, mitogen-responsive phosphoprotein (Drosophila)	0.0048	+
FLJ10357	hypothetical protein FLJ10357	0.0063	.+
PALM2-AKAP2	PALM2-AKAP2	0.0095	+
LEPRE1	leucine proline-enriched proteoglycan (leprecan) 1	0.0113	+
PRR5	proline rich 5 (renal)	0.0124	9
LOC100142659	CTAGE family member	0.0149	2
FBXL11	F-box and leucine-rich repeat protein 11	0.0169	
PPP2R4	protein phosphatase 2A activator, regulatory subunit 4	0.0204	¥
CDS1	CDP-diacylglycerol synthase (phosphatidate cytidylyltransferase) 1	0.0244	35
F11R	F11 receptor	0.0245	3
DCBLD2	discoidin, CUB and LCCL domain containing 2	0.0252	+
HOOK2	hook homolog 2 (Drosophila)	0.0260	걸

Molecular predictors of morphometric features (colony size) """

Nonlinear correlation (logistic $y = \frac{1}{1 + e^{-(\alpha + \beta x)}}$)

Gene symbol	Gene description	T	p-value
PPARG	peroxisome proliferator-activated receptor gamma	0.8667	< 0.001
LPIN2	lipin 2	0.8450	< 0.001
VCL	vinculin	0.8145	< 0.001
CDC42	cell division cycle 42 (GTP binding protein, 25kDa)	0.7970	< 0.001
RFTN1	raftlin, lipid raft linker 1	0.7960	< 0.001
PRR3	proline rich 3	0.7940	< 0.001
INSIG1	insulin induced gene 1	0.7932	< 0.001
APBA2	amyloid beta (A4) precursor protein-binding, family A, member 2 (X11-like)	0.7884	< 0.001
CCDC99	coiled-coil domain containing 99	0.7547	< 0.001
SEC23A	Sec23 homolog A (S. cerevisiae)	0.7530	< 0.001
CYR61	cysteine-rich, angiogenic inducer, 61	0.7530	< 0.001
CLCN6	chloride channel 6	0.7527	< 0.001
AKAP2///PALM2///PALM2-	A kinase (PRKA) anchor protein 2///paralemmin 2///PALM2-AKAP2	0.7505	< 0.001
AKAP2			
FADS1///FADS3	fatty acid desaturase 1///fatty acid desaturase 3	0.7504	< 0.001
DOCK10	dedicator of cytokinesis 10	0.7483	< 0.001
MAP1B	microtubule-associated protein 1B	0.7471	< 0.001
TGFB2	transforming growth factor, beta 2	0.7459	< 0.001
ASB1	ankyrin repeat and SOCS box-containing 1	0.7406	< 0.001
SNAPC1	small nuclear RNA activating complex, polypeptide 1, 43kDa	0.7283	< 0.001
GFPT2	glutamine-fructose-6-phosphate transaminase 2	0.7264	< 0.001

Discussion

- The gene expression profiles of the stellate colonies are the most distinct from the other two morphometric classes
- PPAR-gamma
 - A druggable target, and a hub for lipid metabolism
 - A nuclear receptor protein, functions as transcription factors, and can be spliced in multiple forms
 - A potent inducer of epithelial mesenchymal transition in intestinal epithelial cells
 - Involved in proliferation and differentiation
 - Shown to be highly expressed in metastasized human breast tissue

Validation 1: *In vitro* experiment on PPARG

- MDAMB231 was assayed in 3D cell cultures maintained in H14 medium with 1% fetal bovine serum
- The 3D cultures were prepared in triplicate by seeding single cells on top of a thin layer of Matrigel at a density of 2200 cells/cm2 and overlaid by 5% final Matrigel diluted in culture medium
- GW9662, a PPARG inhibitor, was dissolved in DMSO and added to the 3D cultures in the final concentration of 10 uM at the time of seeding
- The vehicle control was pure DMSO
- The culture medium and the drug were changed every other day
- Five images per well were collected after five full days in 3D culture

In vitro validation results

- Treatment of a MDA-MB-231 with a PPARG-inhibitor indicates reduction in the proliferation rate: (A) untreated line, (B) treatment with Gw-9662, and (C) Proliferation index.
- The proliferation index was determined by incubating cultures with cell proliferation analysis reagent, WST1, on Day 5.

Validation 2: *In vivo* experiment on PPARG

Summary

- A system for identifying sub-populations for a panel of breast cancer cell lines
- These subpopulations are shown to compare well with previously manual clustering of the same data
- Robust statistics in
 - identifying those genes that differentiated computed subpopulations
 - determining genes that track with a specific morphometric feature
- Associative studies indicated that PPAR-gamma, a druggable target, correlates with the colony size and is highly expressed in the stellate subpopulation
- To appear in PLoS Computational Biology

Acknowledgement

LBNL

- Parvin Lab
 - Hang Chang
 - Gerald Fontenay
 - Bahram Parvin
- Bissell Lab
 - Genee Lee
 - Paraic Kenny
 - Mina Bissell
- Joe Gray

Albert Einstein College of Medicine

- Kenny Lab
 - Orsi Giricz
 - Paraic Kenny

UCSF

Frederick Baehner

Funding

NIH ICBP

Thank you!